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THE BOUNDARY ELEMENT METHOD FOR CALCULATING 
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YE. G. POLISHCHUK 

Ekaterinburg 
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A method of solving the boundary-value problem for a visco-rigid plastic medium is considered which leads 

to the method of boundary elements. 

1. STATEMENT OF THE PROBLEM 

WE WILL use the following notation: R3 is a space with fixed Euclidean coordinates x1, x2 and x3 ; C! 
is a region of R3 of class C’, i.e. the boundary Xl is a two-dimensional manifold of class C’ and the 
region CR is situated locally on one side of 8R; v = {ui} is the velocity field in a, e(u) = {cij(u)} is the 
strain rate tensor (eii = ?h(dUildXj + dUj/aX,) i, i = 1,2,3); u = {“;i} is the stress tensor, and s = {sii} 
is its deviator. For points from Xl, n denotes the unit external normal, F = {Fi} (Fi = Uunj) is the 
force density vector on afi (here and below summation over repeated indices is assumed); for any 
vector a applied at a point of dR, a, denotes its projection on the normal and a, its tangential 
component, ( a 1 is its length and (. , - ) the corresponding scalar product; for e = {eij}, 4 = {qii} we 
assume (e, q) = eqqij and 1 e 1 = (eijeii)1’2; the measure in R3 dx = dxldx2dx3, and dS is the measure 
on alR generated by dx; 7’(a) [D(R)] is the space of stress tensors a(x) [deviators s(x)] in K? with 
components from L2 (Cl); H1 (Cl) is the space of vector fields v = {Vi} in L! such that Vi belongs to the 
Sobolev space H’(a); H 1’2(~fi) is the space of vector fields v = {Vi} in dR such that Vi belongs to 
the Sobolev space H”2(Kl); H-“‘(Xl) is the space of linear continuous functionals on H”2(afi). 

Consider a visco-rigid plastic medium, that is, a medium which is incompressible and for which 
the deviator of the stress tensor is defined [l] by the plastic potential 

~(e)=%Irle12+rSIeI 

where p is the coefficient of viscosity and TV is the yield point. We require the deviators to belong to 
the subdifferential @[e(u)], that iss = ~e(u)+~,e(u)/le(u)l if e(u) # 0, and lslsrs if e(u) = 0. 

For slow (quasi-stationary) processes, the real velocity and stress fields are defined by the 
following boundary-value problem. 

Problem 1. In the region a, it is required to find the velocity field v and the stress tensor u 
satisfying the following conditions: 

1. the velocity field satisfies the condition div (v) = 0; 
2. the equilibrium equations au,l&j = 0, i = 1,2,3 apply; 
3. the equation of state of the medium sEacp(e(u)); 
4. boundary conditions: the boundary Xl consists of three parts with non-zero areas KInF, a&, 

cm,. 
Here 8R, is the part of the surface where the forces F = F* are given; IX?,, is the part of the 

surface where the velocities v = v* are given; Xl, is the area of contact with the instrument, on 
which the kinetic constraint and condition of friction described below apply: (a) for the field v and 
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velocity of the instrument w, the normal components are equal; (b) the tangential components fi of 
the force F satisfies the condition lFtl d k = const, where if 1 F,] < k at a given point, then v, = w, 
(sticking); but if 1 F,I = k, then the vector (v,- w,) is in the opposite direction to F, (sliding). 

2. VARIATIONAL FORMULATION 

Let 

A ={ VEP(Q: U=U* Ha an,, U, =w, on aa,1 

M={ v~If’(S2): div(u)=Ol 

Let (u’, a’) be a solution of boundary-value problem 1. Then [l] u” is a solution of the following 
variational problem. 

Problem 2. It is required to find the field u” which, on the set A f~ M, gives a minimum of the 
functional 

We shall assume that the kinematic conditions do not allow R to move as an absolutely solid 
body, that is, if the field u is the difference of the fields from A and e(u) “0, then u=O. On this 
assumption [l], it can be stated that the solution of Problem 2 exists and is unique. 

3. SADDLE POINT 

The difficulty that arises in solving Problem 2 is that a minimum of the functional J must be sought 
for fields u satisfying the incompressibility condition u E M, and not over the whole set A. This 
difficulty is removed [2] by introducing Lagrange multipliers. Let p E L* = L*(a). We put 

G(u, p) = J(u) + Jp div(u) dx 
52 

Problem 3. It is required to find a saddle point (u”, p”) of the function G on the set A x L*, that is 

G(u”, p”) = mln sup G(u, p) = max 
vEA pEL” 

inf G(u, p) 
pEL= vEA 

It can be verified that Problem 3 has a unique solution (u’, p’). The field u” is the solution of 
Problem 2. In fact, since 

G(u", p") =J(q') t sup / p div(u’)dx < + m 
\ pEL’n 

we have div (u”) = 0, and u” E M. Thus 

J(u’) = G(u", b”) = Um8A G(u, p”) < ” Echo M G(u, PO) = ” prji, J(u) 

4. STRESS TENSOR 

Since u”EH’ (a), the stress tensor U’E T(0) and it is therefore impossible to introduce the 
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density of surface forces F on 82 with the formula Fi = Oijni. A weak formulation of the boundary 
condition for forces is therefore needed. We put 

R(Q) = iO=lOijl E T(S2): &l,/axj= 0 i= 1,2,31 

If u has continously differentiable components and satisfies the equilibrium equations, then 

Using this equation, it can be shown [3] that there exists a unique continuous linear operator 

Y: R(s2) -+ r)4(ar2j 

such that if the tensor FT has continuous components, the function V(U) operates subject to the 
formula 

v(u)(u)=_f (F,u)dS, ,~irEH”(ilS2); F=fFiI, Fi=o,jni 
an 

We shall call vfa) the force density on aQ corresponding to the tensor o. For ~(a) it is reasonable 
to introduce ~i(~)~~-~‘2(~~) such that 

V(U) (u) = g Z+(U) (u,), VU ={ ~4~1 EP(a52) 
i= 1 

(We write ~(a) = {~(a)}, and call z+(o) a component of ~(a).) We also introduce functionals 
V,(W) and v~(@), which we call the normal and tangential components. 

The boundary conditions on the forces in Problem 1 will be understood in a general sense, that is, 
the functional ~(a) is used instead of density functions. The following assertion is proved in the 
usual way, 

Assertion. Let (u’, p”) be a saddle point of Problem 3. Then a deviator s°C a(p(e(uO)) exists such 
that the pair (u”, u@), where a0 = {a:}, CT: = s$ +p”&j (6, is the Kronecker delta) is a (generalized) 
solution of boundary-value problem 1. 

5. THE UZAWA ALGORITHM 

The saddle point of Problem 3 can be found using the Uzawa algorithm [4]. For fixedp we find the 
minimum with respect to u of the functional 

G(u, p) = J(u) + 1 p div(u) G% 
n 

The functional J is non-differentiable, making minimization difficult. We therefore make a slight 
modification to Problem 3. Let 

Q= ~cJ=I ~ti]ET(SZ):.lq(x)l<~, almosteverywherein Sz 1 

R= (r= IFi ~EL2(iXZ;,): ir(x)I<k almosteverywherein aS2& 

WeputZ=L2(fi)XT(Q)xL2(ft,),B=L2(IR)~QXRCZ-Let 

L(U, z) = % p J 1 e(u) l’dx +A ( 4, e(u) > dx ti p div(u) dx - 
n 

J (FL ; U) ds t 

anF 
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Instead of Problem 3, consider the following. 

Pro&em 4. It is required to find a saddle point (u”, zO) of the functional L on the set A x B, that is 

L(u”, z”) = min sup Z(u, z) = max inf f.(u, z) 
vE,l zEB ‘E/3 UEA 

If (u”, ZO), 2’) = (PO, q”, r”) is a solution of Problem 4, from the equations 

rSA le(u)ldx = max _f (q,e(u))dx, k I 1 ut -- wt 1 dS = max I (r, uI - ~9~) dS 
qEQ n w- rER iIn, 

it follows that (u’, p”) is a solution of Problem 3. It can also be seen that q” is the deviator and 
{p”6ij} is the spherical part of the real stress tensor, that is, the solution of Problem 1 can be found 
by solving Problem 4. 

We will describe the Uzawa algorithm for Problem 4. Let @: 2-A be an operator such that 
u = Q(z) is a minimum point on the set A of the functional L (u, z) with respect to u for given z. The 
algorithm is as follows. We choose an arbitrary initial value z 0) E B. Each step of the process can be 
described as follows: 

1 for fixed z@) E B, find u@+‘) = Q, (z’“‘), 
2: the next value z(~+‘) = (PC”+‘), q(“+‘), ,cn+‘) ) is computed using the formulae: pCn+‘) = 

p(“) +pdivu(“); q(“+l) is the projection on Q of the element q(“) + pe(u(“)); r@+‘) is the projection 
on R of the element r@) + p(u, @) - w,). The number pE (0, P,,,,~) and there is a limit for pmax. 

Thus, the algorithm essentially consists of computing values of the operator 0. u = @(p, q, r) is 
calculated in two stages: u on &I is first found using an integral equation, and then u inside R is 
calculated from an explicit equation. Suppose first that p, q and r are continuously differentiable. 
Since u = {ui} is the point of the minimum of functional L on A for fixed p, q and r, for any 
permissible variation of the field [ = { &}, that is 3~ H’ (Cl), 5 = 0 on aa , &, on Xl,, we have 

11 +zz +I, - _f (F*,t)dS+ _f (r, Ct)dS=O 
- anF an, (1) 

ZI = d Cc ( e(u), e(t) ) dx, ZZ = x ( 9, e(S) ) dx, Z3 = J p div (5‘) dx 
R 

Integrating by parts, we obtain 
aeij (u) 

I, = I w&.9n&L!? - .f P 7 fi dx 
an 

c2 %;’ {.d 

I 

Zz = a$a9ii~i{idS - $ II , X, 13 = $ p{inidS - J - 
I an 

From (1) it follows that 

aeij(u) 

P- 
axj 

+ bi = 0, 
aYij ap 

(bi=ax- +- axi 
) 

I 

F=F’ on an,, F, = -r on af&(F= Fi , Fi =IJ5i(u)ni +qiini +pni) (3) 

Equations (2) are of the form of equilibrium equations for an elastic medium with modulus of 
elasticity for shear G = Z.~l2 and Poisson’s ratio v = 0 subjected to a force with volume density b;. 

Let 

U(k)(& x) = i ujk)(t, x) 1, F(k)(C;, x) = 1 ek’(.$, x)1 , k= 1,2,3 

) i; rink - rknt I 

r 

r = (riri ?4 1 > ri = Xi - ti 
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Then [5] (putting G = d2 and v = 0) we find that u(~)(,$, x) is a fundamental solution of Eq. (3) 
and @) = aF)n, on the set KI, where o$‘) = peij(u(k)). From Eq. (2) it follows that 

I, + I, = 0 (4) 

We have 
15 = J /&?jj(lJ)njU~k)dS(X) - J /&Tjj(lJ)eij(U’k’) dr = 

an n 

= Ja jtJZjj(U)tIjU~k'dS(X) - ak F:“)UidS(X) +L Cc 
ae,j (dk )) 

ax, 
Ui dX 

hij 

I.s= II- 
f2 axj 

+ $ ] Ujk)dX = J (qjjnj +ptl,)Zl!k)dS(X) - 
I i,R 

-Aqij z au(k) 
dx - j-p-- h 

I n ax, 
Since CL(~) is a fundamental solution, for VIE int R the last integral in the expression for I5 is equal 

to -uk(Q. Thus, from (4) and the definition of F in (3) for [E intn we have 

Uk(t;) = I 
an 

F,(x)u, ‘k’(.&X)CLs(X) - / F,‘Q(& X)Uj(X) d&Y(x) - 
an 

- A Yij(X) 
adk)(t x) 

lax, ’ 
adk)(f q 

I 
dx - ;IP(x) *A dx 

I 

Integral equations for u (5) on alR are obtained similarly 

au(k) 
ck[(l)uj(t) = a1, Ft;Uik’dS(x) - ,71, F:‘)UidS(x) -A q,j A dx -. 

3Xj 

a2Lk) 
-- ;p + dx, k= 1,2,3 

I 

(5) 

(6) 

Formulae for cki(t) exist [5]. In particular, at smooth points ckj(t) = 6ki/2. 
Thus, the first stage in the calculation of u = @(p, q, r) is to find fields u = {vi}, F = {Fi} on aR 

such that the integral equations (6) apply and u = u* on K?,,, , F = F* on XI,, Ft = -r on XI,. We 
then find u in int R using formula (5). 

The calculation of u = @(p, q, r) has been examined for the case where p, q and r are 
continuously differentiable. Since the operator Q, is continuous, the calculation is also valid in the 
general case. 

Note. If the values of the operator @ are calculated in the usual way, discrete approximation of the problem 
leads to the finite element method. The method described above leads to the boundary element method. 
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